5 research outputs found

    Code transplantation for adversarial malware

    Get PDF
    In the nefarious fight against attackers, a wide range of smart algorithms have been introduced, in order to block and even prevent new families of malware before their appearance. Machine learning, for instance, recently gained a lot of attention thanks to its ability to use generalization to possibly detect never-before-seen attacks or variants of a known one. During the past years, a lot of works have tested the strength of machine learning in the cybersecurity field, exploring its potentialities and weaknesses. In particular, various studies highlighted its robustness against adversarial attacks, proposing strategies to mitigate them . Unfortunately, all these findings have focused in testing their own discoveries just operating on the dataset at feature layer space, which is the virtual data representation space, without testing the current feasibility of the attack at the problem space level, modifying the current adversarial sample . For this reason, in this dissertation, we will introduce PRISM, a framework for executing an adversarial attack operating at the problem space level. Even if this framework focuses only on Android applications, the whole methodology can be generalized on other platforms, like Windows, Mac or Linux executable files. The main idea is to successfully evade a classifier by transplanting chunks of code, taken from a set of goodware to a given malware. Exactly as in medicine, we have a donor who donates organs and receivers who receive them, in this case, goodware applications are our donors, the organs are the needed code and the receiver is the targeted malware. In the following work we will discuss about concepts related to a wide variety of topics, ranging from machine learning, due to the target classifier, to static analysis, due to the possible countermeasures considered, to program analysis, due to the extraction techniques adopter, ending in mobile application, because the target operating system is Android

    Intriguing Properties of Adversarial ML Attacks in the Problem Space

    Get PDF
    Recent research efforts on adversarial ML have investigated problem-space attacks, focusing on the generation of real evasive objects in domains where, unlike images, there is no clear inverse mapping to the feature space (e.g., software). However, the design, comparison, and real-world implications of problem-space attacks remain underexplored. This paper makes two major contributions. First, we propose a novel formalization for adversarial ML evasion attacks in the problem-space, which includes the definition of a comprehensive set of constraints on available transformations, preserved semantics, robustness to preprocessing, and plausibility. We shed light on the relationship between feature space and problem space, and we introduce the concept of side-effect features as the byproduct of the inverse feature-mapping problem. This enables us to define and prove necessary and sufficient conditions for the existence of problem-space attacks. We further demonstrate the expressive power of our formalization by using it to describe several attacks from related literature across different domains. Second, building on our formalization, we propose a novel problem-space attack on Android malware that overcomes past limitations. Experiments on a dataset with 170K Android apps from 2017 and 2018 show the practical feasibility of evading a state-of-the-art malware classifier along with its hardened version. Our results demonstrate that "adversarial-malware as a service" is a realistic threat, as we automatically generate thousands of realistic and inconspicuous adversarial applications at scale, where on average it takes only a few minutes to generate an adversarial app. Our formalization of problem-space attacks paves the way to more principled research in this domain.Comment: This arXiv version (v2) corresponds to the one published at IEEE Symposium on Security & Privacy (Oakland), 202

    Crowdsensing and proximity services for impaired mobility

    Get PDF
    La tesi si occupa della creazione di una piattaforma virtuale, composta da un sito web e da una applicazione Android, a supporto di persone con handicap motori. La piattaforma e composta da una mappa interattiva che permette agli utenti di inserire nuovi locali o di commentarne esistenti, e di fare lo stesso per le barriere architettoniche. Per questi motivi il progetto e dettato da una continua comunicazione tra client e server, rendendo la piattaforma aggiornata e dinamica, anche alla vista degli utenti. La parte web viene implementata attraverso Spring MVC, utilizzando delle View .jsp ed AJAX per la comunicazione remota con il server. La parte mobile e stata implementata basandosi principalmente sulle classi di geolocalizzazione di Android, oltre alle librerie osmdroid ed osmbonuspack, fornendo compatitiblita con OSM. Questa fornisce anche un servizio di calcolo del percorso, cercando di evitare il numero maggiore di ostacoli. L'applicazione Android appoggia le proprie comunicazioni sulla libreria Robospice. La parte di persistenza e stata implementata adottando un approccio ad alto livello, grazie ad Hibernate e JPA

    Crowdsensing and proximity services for impaired mobility

    No full text
    New sensors embedded into modern smartphones has led into a new data collection prospective in which people directly collect all the sensitive data. This feature has found different applications, in particular in the Smart Cities area, in order to establish dynamic communications between the citizens and the city government. This category of application is nestled into the Mobile Crowd Sensing (MCS) application group, due to their final purpose of sharing sensing data to an open platform that includes a huge number of people. This paper presents an extension of the general-purpose ParticipAct platform, a MCS application developed by the University of Bologna, focused on the needs of people with impaired mobility. The goal is specializing ParticipAct to enable a crowdsourcing platform that guarantees a solid support for their lifetime allowing reviewing and sharing opinions regarding public and private places and architectonic barriers of a city area. Showed results confirm the effectiveness of the developed application in terms of both its viability via integration with existing and widely diffused Geographical Information Systems (GIS), and its feasibility in terms of system and user-perceived performances
    corecore